Best Practices for

Site Assessment

and the

Septic Test Pit Investigation

SepticDesign.ca

Gunnell Engineering Ltd.

Presentation Summary

- Best Practices Code Context
- Prior to Attending the Site
- When on Site
 - Site Assessment
 - Assessing Existing Sewage Systems
 - The Septic Test Pit Excavation
- Soil Percolation Time
- Sewage System Design Drawings

Site Evaluation & Soils Investigation

- According to OBC 8.2.1.2, a Site Evaluation must be done for every site where a new or replacement sewage system is to be installed.
- Consideration, for each site, must be given to:
 - Soil and subsurface conditions
 - Horizontal and vertical separation distances
 - Topography and flooding potential
 - Lot size, available area for an on-site sewage system
 - Usage / occupancy of property
 - Potential impacts on water resources

Prior to Attending to the Site

- Obtain & Review Existing Documents
 - Legal survey, Site plans, Building design drawings
 - Future swimming pool, landscaping
 - Topographic survey
 - Aerial photographs
 - Soil Map or historical review
 - Existing permits
 - Inspection / maintenance records from Town, Health Units and service providers
 - Geotechnical, Environmental reports
 - Natural Heritage Evaluations

Prior to Attending to the Site

- Arrange for Utility Locates
 - hydro, gas, water, communications
- Have a preliminary design in mind based on anticipated soil & ground water conditions (Q, field size, location)
- Determine what installation constraints may exist;
 - Conservation Authority & NEC boundaries
 - Environmental setbacks
 - Zoning or NHE requirements
 - Flood plain elevation / limit (if applicable)

Prior to Attending the Site

- Have tools & supplies organized;
 - Camera
 - Transit Level, Total Work Station
 - Soil T Probe, Hand Auger
 - Tape Measure
 - Shovel, Scraper
 - Soil Sample Bags
 - Safety Equipment
 - Supplies needed for recording observations and test pit logs

Prior to Attending the Site

- Contact Municipality / Health Unit Officials to determine their requirements and if they need inspectors on site for the test pit investigation / assessment, # of test pits
- Confirm dates / attendance with property owner
- Arrange for septic test pit digging equipment based on site accessibility
 - Backhoe (septic contractor)
 - Auger (when access is an issue)

When On Site Site Assessment

Take Photographs

Take Detailed Notes

Draw Sketches

When On Site Site Assessment – Land Overview

When On Site Site Assessment – Land Overview

When On Site Site Assessment – Land Overview

When On Site Site Assessment

- Walk the property to assess topography with maximum 4:1 slopes in mind (7:1 for Type 'B' Dispersal Beds) and note existing drainage features
- Note landscaping, existing swales, wet areas
- Locate existing / neighbouring wells, cisterns, structures etc.

Site Assessment - the Well?

Site Assessment - the Drilled Well?

Site Assessment – the Dug Well?

When On Site Site Assessment

Drilled, Dug, Sand Point, Shore Wells? Where is the well, wells?

Site Assessment

- Undertake Transit Level, Total Work Station topographic survey. Establish local benchmark
- Choose location of septic test pits based on site conditions and envisioned septic system design and layout.
- Multiple test pits
- Native soil, fill soil, topsoil layers?

When On Site Site Assessment – Topo Survey

When On Site Site Assessment – Well Survey

- House / building addition larger daily flow (Q)
- Locate and assess condition of existing septic system components, for re-use / expansion
 - Septic tank
 - Pump tank
- Clearance distances

- Excavate into existing bed or absorption trench field to assess condition / longevity;
 - Original Health Unit permit?
 - Confirm pipe locations with probe / excavator
 - Expose distribution pipes to determine materials, size and condition, biomat formation
 - Excavate test pits beside field and into native soil, to secure soils for assessment

- Additional methods for locating and assessing existing subsurface system components
 - Drain Camera (with transmitter)
 - Metal detector with drain snake or subsurface detection measures
 - Dye or smoke
 - Flushable transmitter

- Possible re-use of tanks?
- Soil condition? Percolation time?
- Amount of distribution pipe, New 'Q' assessment
- Re-use of existing sewage system?
 - New septic tank, enlarge field, add treatment unit
- Meet 2012 OBC requirements
- Replacement sewage system ?

When On Site the Septic Test Pit Excavation

- Consider accessibility to site for digging equipment and arrange with occupants and / or neighbours
- All parties on site!
- Observe Ministry of Labour safety guidelines for trenches and excavations
- Contractor to have spare materials to repair any distribution or header pipes damaged during the investigation

When On Site the Septic Test Pit Excavation

- Septic test pits dug by backhoe to expose the soil profile and help gauge the variability of the soil and the presence of high ground water or restrictive layers
- Stepped excavation for access, caution
- Excavation depths
 - 6 ft (1.8m), 3 ft (0.9m)
 - Access profile, if fill excavate min. 3ft / 6 ft

When On Site The Septic Test Pit Excavation

- Dig 1, 2 or 3 test pits soil variability, size, location (verify requirements with governing municipality)
- Excavate to a minimum depth of 1.8m (6.0 ft) or to a limiting surface condition
- Identify, examine, feel, measure and record the nature, structure, colour, compaction and depth of the soil layers topsoil, fill, topsoil, soil layers
- Take photos and prepare a Soil Test Pit log with sketch

When On Site the Septic Test Pit Excavation

- Note and record depth to groundwater or groundwater staining or to bedrock if present
- Obtain multiple soil samples at various levels and label them clearly for USCS classification and percolation time (T-time) determination
- If test pit is to be left open, take measures to eliminate any fall hazard with clear signage, a sturdy cover or fencing

When On Site the Septic Test Pit Excavation

Soil Profile Showing Different Soil Horizons

8.2.1.2. Site Evaluation

- (2) The percolation time shall be determined by,
 (a) Conducting percolation tests
- i.e. in-ground / in-situ soil testing,
- Appendix A 8.2.1.2.(3) Test Procedure
- Digging holes, add water, measure time
- Percolation Time = Time Interval (min) / Ave drop (cm)
- Minimum 3 locations, use highest T-time

8.2.1.2. Site Evaluation

- (b) classifying the soil according to one of the following methods;
- the Unified Soil Classification System as described in MMAH Supplementary Standard SB-6, "Percolation Time and Soil Descriptions",

2012

MMAH Supplementary Standard SB-6

Table 2 Approximate Relationship of Coarse Grained Soil Types to Permeability and Percolation Time

	Soil Type (Unified Soil Classification)	Coefficient of	Percolation Time,	Comment	
	Coarse Grained More than 50% Larger than #200	Permeability, K - cm/sec	T - mins/cm		
G.W	Well graded gravels, gravel-sand mixtures, little or no fines.	10-1	<1	very permeable unacceptable	
G.P., -	Poorly graded gravels, gravel-sand mixtures, little or no fines.	10-1	<1	very permeable unacceptable	
G.M	Silty gravels, gravel-sand-silt mixtures.	10-2 - 10-4	4 - 12	Permeable to medium permeable depending on amoun of silt.	
G.C	Clayey gravels, gravel-sand-clay mixtures.	10-4 - 10-6	12 - 50	Important to estimate amount of silt and clay	
S.W	Well graded sands, gravelly sands little or no fines.	10-1 - 10-4	2 - 12	medium permeability	
S.P	Poorly graded sands, gravelly sand, little or no fines.	10 ⁻¹ - 10 ⁻³	2 - 8	medium permeability	
S.M	Silty sands, sand-silt mixtures.	10-3 - 10-5	8 - 20	medium to low permeability	
S.C	Clayey sands, sand-clay mixtures.	10-4 - 10-6	12 - 50	medium to low permeability depending on amount of clay	
	. Column 1	2	3	4	

2012

MMAH Supplementary Standard SB-6

Table 3
Approximate Relationship of Coarse Grained Soil Types to Permeability and Percolation Time

Soil Type (Unified Soil Classification)		Coefficient of Permeability,	Percolation Time,	Comment	
	Fine Grained More than 50% Passing #200	K - cm/sec	T - mins/cm	33	
M.L	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, clayey silts with slight plasticity	10-5 - 10-6	20 - 50	medium to low permeability	
C.L	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	10 ⁻⁶ and less	over 50	unacceptable	
O.L	Organic silts, organic silty clays of low plasticity; liquid limit less than 50	10-5 and less	20 - over 50	acceptable depends on clay content	
M.H	Inorganic silts, micareaous or diatomageous fine sandy or silty soils, elastic silts	10-6 and less	over 50	unacceptable	
C.H	Inorganic clays of medium to high plasticity, organic silts	10 ⁻⁷ and less	over 50	unacceptable	
O.H Organic clays of medium to high plasticity organic silt; liquid limit over 50		10-6 and less	over 50	unacceptable	
	Column 1	2	3	4	

Sewerage System Standard Practice Manual Version 2

Table 2-8 Soil Hydraulic Loading Rates for Residential Strength Wastewater

SOIL CHARACTERISTICS ¹			away library	FIELD	3000		data.
	STRU	CTURE	PERCOLATION RATES (MIN/2.54 CM)	SATURATED HYDRAULIC CONDUCTIVITY (KFS) MM/DAY	WASTEWATER LOADING RATES IMPERIAL GALLONS/FT²/DAY (LITRES/M²/DAY)		
TEXTURE (USDA)	SHAPE	GRADE			IMPERIAL GALLONS/F1-/DAT (LITRES/M-/DAT)		
					TYPE 1	TYPE 2	TYPE 3
Gravelly sand	-	Single grain	< 2	>3,500	0.7 (34)	1.4 (68)	2.1 (103)
Coarse to medium sand/loamy sand	=-	Single grain	2-5	1,500 - 3,500	0.6 (29)	1.2 (59)	1.8 (88)
Fine sand/fine loamy sand		Single grain	5 – 15	250 - 1,500	0.5 (25)	1.0 (49)	1.5 (75)
	Massive	structureless	20 – 30	125 – 250	0.3 (15)	0.45 (22)	0.6 (29)
	Dieta	weak			0.3 (15)	0.45 (22)	0.6 (29)
Sandy loam	Platy	moderate, strong			not recommended	not recommended	not recommended
	prismatic, blocky, granular	weak	10 – 20	250 – 500	0.4 (20)	0.7 (34)	1.0 (49)
		moderate, strong			0.5 (25)	1.0 (49)	1.5 (74)
	massive	structureless		60 – 125	0.2 (10)	0.3 (15)	0.4 (20)
	Platy	weak	30 – 40		0.2 (10)	0.3 (15)	0.4 (20)
Loam		moderate, strong			not recommended	not recommended	not recommended
	prismatic, blocky, granular	weak	20 – 30	125 – 250	0.3 (15)	0.5 (24)	0.7 (34)
		moderate, strong			0.4 (20)	0.8 (39)	1.2 (59)
	massive	structureless	40 – 60	30 – 60	0.2 (10)	0.3 (15)	0.4 (20)
	platy	weak			0.2 (10)	0.3 (15)	0.4 (20)
Silt loam, silt		moderate, strong			not recommended	not recommended	not recommended
	prismatic, blocky, granular	weak	20 – 40	60 – 250	0.3 (15)	0.5 (24)	0.7 (34)
		moderate, strong			0.4 (20)	0.8 (39)	1.2 (59)
	massive	structureless		15 – 30	not suitable	not suitable	not suitable
	Service -	weak	60 – 90		not suitable	not recommended	not recommended
Clay loam, sandy clay loam, silty clay loam	platy	moderate, strong			not suitable	not suitable	not suitable
loam, sity clay loam	prismatic, blocky, granular	weak	40 – 60	30 – 60	0.2 (10)	0.3 (15)	0.4 (20)
		moderate, strong			0.3 (15)	0.45 (22)	0.6 (29)
	massive	structureless	90 -> 120	< 5.0 – 60	not suitable	not suitable	not suitable
0 1 1 1 1 1 1 1 1 1	platy	weak				not recommended	not recommended
Sandy clay, silty clay, clay		moderate, strong				not suitable	not suitable
ciay	prismatic, blocky, granular	weak				0.15 (7)	0.18 (9)
		moderate, strong				0.2 (10)	0.25 (13)

8.2.1.2. Site Evaluation

- (b) classifying the soil according to one of the following methods;
 - the Soil Texture Classification as described in Chapter 3 of USDA, "Soil Survey Manual".

Chart showing the percentages of clay, sill, and sand in the basic textural classes.

Selection of 'T' Time

- Select range from Soil Unified Soil Classification System
- Review laboratory grain sieve analysis curve
- Review soil identifiers and soil characteristics
- Assess soil structure, density, colour, organic content, clay content (fines)
- Determine appropriate design 'T' Time

Thank you - Questions ??

Eric@SepticDesign.ca 905-868-9400

SepticDesign.ca
Gunnell Engineering Ltd.